
Lightweight Preemptive User-Level Threads
@ PPoPP '21

Shumpei Shiina (The University of Tokyo), Shintaro Iwasaki (Argonne National Laboratory),

Kenjiro Taura (The University of Tokyo), Pavan Balaji (Argonne National Laboratory)

More Threads than the Number of Cores

External Library

Nested Parallelism

Asynchronous Tasks

Thread

Core

Threads are created
dynamically

1

Thread schedulers should be able to handle many, fine-grained threads
- Complicated software stacks where many parallel libraries are hierarchically composed

- Coexisting various kinds of tasks (e.g., in situ analysis with simulation tasks and analysis tasks)

--> Lightweight threads are needed

Customizable Thread Schedulers for High Performance
It is often beneficial to customize thread schedulers for specific workloads

The below example: work stealing scheduler for threads with priorities (e.g., for in situ analysis)

2

Core Core Core Core

Low-Priority Threads

High-Priority Threads

Thread Queue

1. pop

2. steal

3. pop

4. steal

How about M:N Threads (User-Level Threads)?

Heavyweight threading operations

e.g., thread creation, context switching

Inflexible scheduling policies

controlled by the kernel

3

M threads

N KLTsN KLTs

N threads

Lightweight threading operations

without the involvement of the kernel

Flexible scheduling policies

which can be defined in user space

Many M:N thread-based parallel runtimes have been developed:

Language: Chapel, X10, Charm++, OmpSs, etc.

Library: Argobots, Qthreads, Massivethreads, etc.

1:1 Threads
(Kernel-Level Threads; KLTs)

M:N Threads
(User-Level Threads; ULTs)

Lack of Preemption
in M:N Threads

Nested Parallelism

Many existing multithreaded programs assume that
they can exclusively use all cores

--> sometimes they have busy-loop-based barriers

M:N Thread

Core

Core Core

Ready Threads

Wait for other M:N threads for synchronization in a busy loop
--> deadlock

External
multithreaded
program

A low-priority M:N thread is occupying the core for a
long time without voluntarily yielding the core

High priority M:N threads remain idle for a long time

Core
Ready Threads

Loss of Prioritization

Deadlock

4

Contributions of This Paper
Investigate preemption techniques for user-level M:N threads

They should be implemented as a pure library (that can be used from C/C++)

Two techniques:
Signal-Yield: an existing technique

KLT-Switching: our new proposal

Provide optimizations for preemptive M:N threads based on detailed analysis
Scalable periodic timer interruption for preemption

Efficient implementation of KLT-switching

Evaluate preemptive user-level threads implemented on Argobots [1]

Preemptive M:N threads can be as fast as nonpreemptive M:N threads in practice

[1] S. Seo, et al., "Argobots: A lightweight low-level threading and tasking framework," IEEE Transactions on
Parallel and Distributed Systems, vol. 29, no. 3, pp. 512-526, 2017. 5

Outline
1:1 Threads and M:N Threads

Design of Preemptive M:N Threads

Signal-Yield

KLT-Switching

Optimizations for Preemptive M:N Threads

Evaluation
Overhead of Preemption

Deadlock Prevention in Cholesky Decomposition

In Situ Analysis with LAMMPS

Conclusion

Outline
1:1 Threads and M:N Threads

Design of Preemptive M:N Threads

Signal-Yield

KLT-Switching

Optimizations for Preemptive M:N Threads

Evaluation
Overhead of Preemption

Deadlock Prevention in Cholesky Decomposition

In Situ Analysis with LAMMPS

Conclusion

1:1 Threads M:N Threads

• Threads visible to the user are directly
mapped to kernel-level threads (KLTs)

• Most implementations of Pthreads and
OpenMP threads

• Many user-visible threads are created
and dynamically mapped to KLTs

• As many KLTs as the number of cores
are usually created

• Often called "user-level threads (ULTs)"

6

M threads

N KLTsN KLTs

N threads

1:1 Threads M:N Threads

The kernel can interrupt KLTs and schedule
others on cores at any time (preemption)

KLTs can be preempted by the kernel,
but how to preempt M:N threads?

7

M threads

N KLTsN KLTs

N threads

Outline
1:1 Threads and M:N Threads

Design of Preemptive M:N Threads

Signal-Yield

KLT-Switching

Optimizations for Preemptive M:N Threads

Evaluation
Overhead of Preemption

Deadlock Prevention in Cholesky Decomposition

In Situ Analysis with LAMMPS

Conclusion

KLT1

execution

Thread1

t

Signal-Yield
[1] A. Anantaraman et al., "EDF-DVS scheduling on the IBM embedded PowerPC 405LP," Proceedings of the IBM
P= ac2 Conference, 2004.
[2] M. S. Mollison and J. H. Anderson, "Bringing theory into practice: A userspace library for multicore real-time
scheduling," 2013 IEEE 19th Real-Time and Embedded Technology and Applications Symposium (RTAS), 2013.
[3] S. Boucher et al., "Lightweight preemptible functions," 2020 USENIX Annual Technical Conference, 2020.
[4] Go 1.14 release notes. Available: https://golang.org/doc/go1.14

Idea: Interrupt execution of threads by a signal and yield in a signal handler

This technique has already been proposed in [1, 2, 3] and integrated to Go from v1.14 [4]

8

KLT1

execution

signal handler
Interruption

Thread1

t

Signal-Yield
[1] A. Anantaraman et al., "EDF-DVS scheduling on the IBM embedded PowerPC 405LP," Proceedings of the IBM
P= ac2 Conference, 2004.
[2] M. S. Mollison and J. H. Anderson, "Bringing theory into practice: A userspace library for multicore real-time
scheduling," 2013 IEEE 19th Real-Time and Embedded Technology and Applications Symposium (RTAS), 2013.
[3] S. Boucher et al., "Lightweight preemptible functions," 2020 USENIX Annual Technical Conference, 2020.
[4] Go 1.14 release notes. Available: https://golang.org/doc/go1.14

Idea: Interrupt execution of threads by a signal and yield in a signal handler

This technique has already been proposed in [1, 2, 3] and integrated to Go from v1.14 [4]

8

KLT1

scheduler

execution

signal handler
Interruption

Yield

Thread1

t

Signal-Yield
[1] A. Anantaraman et al., "EDF-DVS scheduling on the IBM embedded PowerPC 405LP," Proceedings of the IBM
P= ac2 Conference, 2004.
[2] M. S. Mollison and J. H. Anderson, "Bringing theory into practice: A userspace library for multicore real-time
scheduling," 2013 IEEE 19th Real-Time and Embedded Technology and Applications Symposium (RTAS), 2013.
[3] S. Boucher et al., "Lightweight preemptible functions," 2020 USENIX Annual Technical Conference, 2020.
[4] Go 1.14 release notes. Available: https://golang.org/doc/go1.14

Idea: Interrupt execution of threads by a signal and yield in a signal handler

This technique has already been proposed in [1, 2, 3] and integrated to Go from v1.14 [4]

8

KLT1

scheduler

execution

signal handler
Interruption

Yield

Thread1

t

Signal-Yield
[1] A. Anantaraman et al., "EDF-DVS scheduling on the IBM embedded PowerPC 405LP," Proceedings of the IBM
P= ac2 Conference, 2004.
[2] M. S. Mollison and J. H. Anderson, "Bringing theory into practice: A userspace library for multicore real-time
scheduling," 2013 IEEE 19th Real-Time and Embedded Technology and Applications Symposium (RTAS), 2013.
[3] S. Boucher et al., "Lightweight preemptible functions," 2020 USENIX Annual Technical Conference, 2020.
[4] Go 1.14 release notes. Available: https://golang.org/doc/go1.14

Idea: Interrupt execution of threads by a signal and yield in a signal handler

This technique has already been proposed in [1, 2, 3] and integrated to Go from v1.14 [4]

8

Possibly schedule
other threads

Thread2 Thread3

KLT1

scheduler

execution

signal handler
Interruption

Yield

Thread1

t

Reschedule
Thread1

Signal-Yield
[1] A. Anantaraman et al., "EDF-DVS scheduling on the IBM embedded PowerPC 405LP," Proceedings of the IBM
P= ac2 Conference, 2004.
[2] M. S. Mollison and J. H. Anderson, "Bringing theory into practice: A userspace library for multicore real-time
scheduling," 2013 IEEE 19th Real-Time and Embedded Technology and Applications Symposium (RTAS), 2013.
[3] S. Boucher et al., "Lightweight preemptible functions," 2020 USENIX Annual Technical Conference, 2020.
[4] Go 1.14 release notes. Available: https://golang.org/doc/go1.14

Idea: Interrupt execution of threads by a signal and yield in a signal handler

This technique has already been proposed in [1, 2, 3] and integrated to Go from v1.14 [4]

8

Possibly schedule
other threads

Thread2 Thread3

KLT1

scheduler

execution

signal handler
Interruption

Yield

Thread1

t

Exit handler

Reschedule
Thread1

Signal-Yield
[1] A. Anantaraman et al., "EDF-DVS scheduling on the IBM embedded PowerPC 405LP," Proceedings of the IBM
P= ac2 Conference, 2004.
[2] M. S. Mollison and J. H. Anderson, "Bringing theory into practice: A userspace library for multicore real-time
scheduling," 2013 IEEE 19th Real-Time and Embedded Technology and Applications Symposium (RTAS), 2013.
[3] S. Boucher et al., "Lightweight preemptible functions," 2020 USENIX Annual Technical Conference, 2020.
[4] Go 1.14 release notes. Available: https://golang.org/doc/go1.14

Idea: Interrupt execution of threads by a signal and yield in a signal handler

This technique has already been proposed in [1, 2, 3] and integrated to Go from v1.14 [4]

8

Possibly schedule
other threads

Thread2 Thread3

KLT-Dependence Issue in Signal-Yield
Some existing functions can access KLT-local data, not M:N thread-local data

e.g., Glibc malloc() uses KLT-local data for KLT-local caching of memory blocks

malloc

signal handler

t

Interruption
Thread1

KLT1

9

some function

malloc

signal handler

t

Context Switching

Thread1

Thread2

KLT1

KLT-Dependence Issue in Signal-Yield

9

Some existing functions can access KLT-local data, not M:N thread-local data

e.g., Glibc malloc() uses KLT-local data for KLT-local caching of memory blocks

Interruption

some function

malloc

signal handler

t

Context Switching

Thread1

Thread2 malloc
Call

KLT1

KLT-local data

KLT-Dependence Issue in Signal-Yield

9

Some existing functions can access KLT-local data, not M:N thread-local data

e.g., Glibc malloc() uses KLT-local data for KLT-local caching of memory blocks

malloc() is concurrently called in the same KLT
--> race condition for KLT-local data

(undefined behaviour)

Interruption

How to Support Safe Preemption?

KLT-Dependence Issue:

KLT-local data are assumed to be accessed sequentially, but signal-yield breaks this
assumption

Multiple thread contexts can run on the same KLT

By using signal-yield, threads can be interrupted while accessing KLT-local data

Solution:

Switch to another KLT when preemption happens so that KLT-local data are not
modified while being preempted

We call it KLT-switching(our new proposal)

Some existing library functions are not M:N thread-aware
and access KLT-local data directly

(e.g., Glibc malloc uses KLT-local caching for memory blocks)

10

KLT-Switching

execution

signal handler
Interruption

Thread1

KLT1

KLT2

t

sleep

Idea (our proposal): switching to another KLT only when preemption happens

-> KLT-local data are not modified while being preempted

11

Suspended

KLT-Switching

scheduler

execution

signal handler
Interruption

Yield

Thread1

KLT1

KLT2

t

sleep

Suspend KLT

Idea (our proposal): switching to another KLT only when preemption happens

-> KLT-local data are not modified while being preempted

11

Suspended

KLT-Switching

scheduler

execution

signal handler
Interruption

Yield

Thread1

KLT1

KLT2

t

sleep

Suspend KLT

Idea (our proposal): switching to another KLT only when preemption happens

-> KLT-local data are not modified while being preempted

11

Possibly schedule
other threads

Thread2 Thread3

Suspended

KLT-Switching

scheduler

execution

signal handler
Interruption

Yield

Thread1

KLT1

KLT2

t

sleep

Suspend KLT

Idea (our proposal): switching to another KLT only when preemption happens

-> KLT-local data are not modified while being preempted

11

Possibly schedule
other threads

Thread2 Thread3

Suspended

KLT-local data of KLT1 is not modified
while Thread1 is being suspended

KLT-Switching

scheduler

execution

signal handler
Interruption

Yield

Thread1
Exit handler

Reschedule Thread1

KLT1

KLT2

t

sleep sleep

Suspend KLT

Idea (our proposal): switching to another KLT only when preemption happens

-> KLT-local data are not modified while being preempted

11

Possibly schedule
other threads

Suspended
Thread2 Thread3

Thread Mapping in Preemptive M:N Threads

Nonpreemptive/signal-yield KLT-switching

In KLT-switching,
- There is no static mapping between workers and KLTs
- Only "N" KLTs are active at the same time

--> Thread scheduling is customizable by the user

Worker: virtualization of physical cores

12

M threads

N workers

P KLTs

M threads

N workers

N KLTs

Outline
1:1 Threads and M:N Threads

Design of Preemptive M:N Threads

Signal-Yield

KLT-Switching

Optimizations for Preemptive M:N Threads

Evaluation
Overhead of Preemption

Deadlock Prevention in Cholesky Decomposition

In Situ Analysis with LAMMPS

Conclusion

Optimizations for Preemption Timer

Preemption Timer: periodic timer interruption for each worker (using timer_create() syscall)

t t

Observation: When signals are delivered at the same
time across different cores, large amounts of time are

consumed because of lock contention in the kernel

Core1

Core2

Core3

Core4

Interruption Optimization of aligning timings of interruption

Better Performance

13

Preemption interval

Optimizations for KLT-Switching

Use futex in Linux for suspending and resuming KLTs

The POSIX-compliant implementation use sigsuspend() and pthread_kill()
They can be called from signal handlers (async-signal-safe)

Heavyweight because of additional signal handling

Worker-local pools for suspended KLTs

Each worker has its own KLT pool for caching

Avoid resetting CPU affinity of KLTs
When a KLT is mapped to a worker, the CPU affinity of the KLT should be set to the worker's CPU

14

Summary of Thread Implementations
Explicit Threading
Operations

Overhead of
Preemption

Scheduling
Policies

Safety of
Preemption (*)

1:1 Threads Heavyweight Low (2.8 us) Not customizable Safe

Nonpreemptive M:N Threads Lightweight - Customizable -

Preemptive M:N Threads
(Signal-Yield)

Lightweight Medium (3.5 us) Customizable Unsafe

Preemptive M:N Threads
(KLT-Switching)

Lightweight High(9.9 us) Customizable Safe

High overhead of preemption is acceptable because
preemption is infrequent enough in practice

(evaluated later)

15

(*) Whether or not the KLT-dependence issue happens

Outline
1:1 Threads and M:N Threads

Design of Preemptive M:N Threads

Signal-Yield

KLT-Switching

Optimizations for Preemptive M:N Threads

Evaluation
Overhead of Preemption

Deadlock Prevention in Cholesky Decomposition

In Situ Analysis with LAMMPS

Conclusion

Evaluation
CPU: Intel Xeon Platinum 8180M (Skylake)

of sockets: 2

of cores: 56 (28 x 2)

Preemptive M:N threads are implemented on Argobots, an M:N threading library

Evaluation:

1. Overhead of Preemption (using a microbenchmark)

2. Deadlock Prevention in Cholesky Decomposition
Preemptive M:N threads resolve a deadlock and outperforms 1:1 threads

3. In Situ Analysis with LAMMPS
Evaluation of the benefit of user-defined schedulers with preemption

16

Overhead of Preemption

Optimizations for
KLT-switching

Using a compute-intensive program

Baseline: nonpreemptive M:N threads

KLT-switching costs higher than signal-yield

The overhead of KLT-switching is only ~ 1%
with the timer interval of 1 ms

Note: Explicit threading operations (e.g.,
context switching and thread creation) are
as lightweight as nonpreemptive threads

OS preemption interval is typically in the millisecond range

17

Cholesky Decomposition

Cholesky Decomposition

Thread Thread Thread Thread Thread

Intel MKL

Thread Thread Thread

Call BLAS subroutines
(e.g., cblas_dgemm)

Deadlock
without

preemption
A closed-source library with
busy-loop-based barriers

Outer Parallelism
(OpenMP tasks with data dependencies)

Inner Parallelism
(OpenMP threads created within MKL)

Intel MKL

Thread Thread Thread

18

Evaluation of Cholesky Decomposition

Higher is better

Larger Problem Size

Nonpreemptive M:N threads with a hack
for replacing busy-loop-based barriers

(BOLT: an OpenMP wrapper over Argobots)

Preemptive M:N threads
(KLT-switching) without a hack

Intel OpenMP based on
1:1 threads

Intel OpenMP with inner
parallelism disabled

19

Evaluation of Cholesky Decomposition

Higher is better

Larger Problem Size

Heavyweight threading operations
of 1:1 threads with nested parallelism

Outer parallelism is not enough
-> Nested parallelism is beneficial

Preemption adds some overheads to
nonpreemptive M:N threads, but
performs better than 1:1 threads

19

In Situ Analysis with LAMMPS
LAMMPS: a widely-used molecular dynamics simulator

In situ analysis: a modern way to perform analysisand simulationat the same time

Analysis threads are created based on the progress of simulation threads

Thus, analysis threadsshould be evicted from cores in favor of simulation threads

Preemptive scheduling is effective for thread prioritization

Higher priorityLower priority

20

Evaluation of In Situ Analysis with LAMMPS

Lower is better

Priority of Pthreads is set
via "nice" values

Line Plot: relative overhead compared with the baseline

Baseline: simulation only (without analysis)

1:1 Threads (Pthreads) add large overheads because of
heavyweight threading operations

Preemptive M:N threads perform better, thanks to...

Lightweight threading operations

Efficient prioritization of threads enabled by preemption

Preemptive M:N threads

21

Outline
1:1 Threads and M:N Threads

Design of Preemptive M:N Threads

Signal-Yield

KLT-Switching

Optimizations for Preemptive M:N Threads

Evaluation
Overhead of Preemption

Deadlock Prevention in Cholesky Decomposition

In Situ Analysis with LAMMPS

Conclusion

Conclusion
Investigated two techniques for preemptive M:N threads:

Signal-yield: lower cost, but unsafe

KLT-switching: Higher cost, but covers a wider range of programs

Implemented preemptive M:N threads on Argobots and evaluated them
They can avoid a deadlock and outperform runtimes based on 1:1 threads

They enable efficient user-level schedulers specialized for specific workloads
With nonpreemptive M:N threads, priority-based scheduling was hard to support

Preemption brings more freedom to M:N threads in implementing efficient user-defined
schedulers with low overheads!

22

Artifact: https://doi.org/10.5281/zenodo.4420552

